Minimum Spanning Tree in Rust

Published on 20 April 2023 (Updated: 08 May 2023)

Welcome to the Minimum Spanning Tree in Rust page! Here, you'll find the source code for this program as well as a description of how the program works.

Current Solution

use std::env::args;
use std::process::exit;
use std::str::FromStr;
use std::collections::{HashMap, HashSet};

fn usage() -> ! {
    println!("Usage: please provide a comma-separated list of integers");

fn parse_int<T: FromStr>(s: &str) -> Result<T, <T as FromStr>::Err> {

fn parse_int_list<T: FromStr>(s: &str) -> Result<Vec<T>, <T as FromStr>::Err> {
        .collect::<Result<Vec<T>, <T as FromStr>::Err>>()

#[derive(Debug, Clone)]
struct Node {
    index: usize,
    children: HashMap<usize, i32>,

impl Node {
    fn new(index: usize) -> Node {
        Node {index: index, children: HashMap::<usize, i32>::new()}

    fn add_child(&mut self, index: usize, weight: i32) {
        self.children.insert(index, weight);

type Tree = Vec<Node>;

fn create_tree(weights: &Vec<i32>, num_vertices: usize) -> Tree {
    // Create nodes
    let mut nodes: Vec<Node> = (0..num_vertices)
        .map(|index| Node::new(index))

    // Add child nodes to each node based on non-zero values of adjacency matrix
    let mut index = 0;
    for row in 0..num_vertices {
        for col in 0..num_vertices {
            let weight = weights[index];
            index += 1;
            if weight > 0 {
                nodes[row].add_child(col, weight);


struct MstResult {
    src_index: usize,
    dest_index: usize,
    weight: i32,

impl MstResult {
    fn new(src_index: usize, dest_index: usize, weight: i32) -> MstResult {
        MstResult {src_index: src_index, dest_index: dest_index, weight: weight}

// Prim's Minimum Spanning Tree (MST) Algorithm based on C implementation of
fn prim_mst(tree: &Tree) -> Vec<MstResult> {
    let num_vertices = tree.len();

    // Array to store constructed MST. Indicate no parents yet
    let mut parents = vec![0; num_vertices];

    // Key values used to pick minimum weight edge. Initialize to infinity
    let mut keys = vec![i32::MAX; num_vertices];

    // Indicate nothing in MST yet
    let mut mst_set = HashSet::<usize>::new();

    // Include first vertex in MST
    keys[0] = 0;

    // The MST will include all vertices
    while mst_set.len() < num_vertices {
        // Pick index of the minimum key value not already in MST
        let u: usize = (0..num_vertices)
            .filter(|index| !mst_set.contains(index))
            .map(|index| (keys[index], index))

        // Add picked vertex to MST

        // Update key values and parent indices of picked adjacent
        // vertices. Only consider vertices not yet in MST
        for (v, weight) in tree[u].children.iter() {
            if !mst_set.contains(v) && *weight < keys[*v] {
                parents[*v] = u;
                keys[*v] = *weight;

    // Construct MST information to return, skipping over root
        .map(|v| MstResult::new(parents[v], v, keys[v]))

fn get_total_mst_weight(mst: &Vec<MstResult>) -> i32 {
        .map(|mst_item| mst_item.weight)

fn main() {
    let mut args = args().skip(1);

    // Convert 1st command-line argument to list of integers
    let weights: Vec<i32> = args
        .and_then(|s| parse_int_list(&s).ok())
        .unwrap_or_else(|| usage());

    // Exit if number of weights is not a square
    let num_weights = weights.len();
    let num_vertices = (num_weights as f32).sqrt().round() as usize;
    if num_weights != num_vertices * num_vertices

    // Create tree
    let tree = create_tree(&weights, num_vertices);

    // Get MST using Prim's algorithm
    let mst = prim_mst(&tree);

    // Calculate total weight of MST and display
    println!("{}", get_total_mst_weight(&mst));

Minimum Spanning Tree in Rust was written by:

If you see anything you'd like to change or update, please consider contributing.

How to Implement the Solution

No 'How to Implement the Solution' section available. Please consider contributing.

How to Run the Solution

No 'How to Run the Solution' section available. Please consider contributing.