Minimum Spanning Tree in Algol68

Published on 06 February 2023 (Updated: 06 February 2023)

Welcome to the Minimum Spanning Tree in Algol68 page! Here, you'll find the source code for this program as well as a description of how the program works.

Current Solution

MODE PARSEINT_RESULT = STRUCT(BOOL valid, INT value, STRING leftover);
MODE PARSEINTLIST_RESULT = STRUCT(BOOL valid, REF []INT values);

PROC parse int = (REF STRING s) PARSEINT_RESULT:
(
    BOOL valid := FALSE;
    REAL r := 0.0;
    INT n := 0;
    STRING leftover;

    # Associate string with a file #
    FILE f;
    associate(f, s);

    # On end of input, exit if valid number not seen. Otherwise ignore it #
    on logical file end(f, (REF FILE dummy) BOOL:
        (
            IF NOT valid THEN done FI;
            TRUE
        )
    );

    # Exit if value error #
    on value error(f, (REF FILE dummy) BOOL: done);

    # Convert string to real number #
    get(f, r);

    # If real number is in range of an integer, convert to integer. Indicate integer is valid if same as real #
    IF ABS r <= max int
    THEN
        n := ENTIER(r);
        valid := (n = r)
    FI;

    # Get leftover string #
    get(f, leftover);

done:
    close(f);
    PARSEINT_RESULT(valid, n, leftover)
);

PROC count list items = (STRING s) INT:
(
    INT count := 1;
    FOR k TO UPB s
    DO
        IF s[k] = ","
        THEN
            count +:= 1
        FI
    OD;

    count
);

PROC parse int list = (REF STRING s) PARSEINTLIST_RESULT:
(
    BOOL valid := FALSE;
    STRING leftover := s;
    INT num list items = count list items(s);
    HEAP [num list items]INT values;

    # Repeat while valid value #
    FOR k TO num list items
    DO
        # Get next integer value and update leftover string #
        PARSEINT_RESULT result = parse int(leftover);
        valid := valid OF result;
        leftover := leftover OF result;

        # Append the integer value to list #
        values[k] := value OF result;

        # Do nothing if end of string #
        IF leftover = ""
        THEN
            SKIP
        # Skip comma if leftover string starts with comma #
        ELIF leftover[1] = ","
        THEN
            leftover := leftover[2:]
        # Otherwise indicate invalid #
        ELSE
            valid := FALSE
        FI
    UNTIL NOT valid
    OD;

    PARSEINTLIST_RESULT(valid, values)
);

PROC usage = VOID: printf(($gl$, "Usage: please provide a comma-separated list of integers"));

# Convert list of values to a matrix #
PROC convert to matrix = (REF []INT values, INT num rows, INT num cols) REF [, ]INT:
(
    HEAP [num rows, num cols]INT matrix;
    INT count := 0;
    FOR i TO num rows
    DO
        FOR j TO num cols
        DO
            count +:= 1;
            matrix[i, j] := values[count]
        OD
    OD;

    matrix
);

COMMENT
Prim's Minimum Spanning Tree (MST) Algorithm based on C implementation of
https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/
COMMENT
MODE MST = STRUCT(INT vertex1, INT vertex2, INT weight);
PROC prim mst = (REF [, ]INT graph) REF []MST:
(
    INT num vertices := UPB graph;

    # Array to store constructed MST #
    [num vertices]INT parents;

    # Key values used to pick minimum weight edge #
    [num vertices]INT keys;

    # Array used to indicate if vertex is in MST #
    [num vertices]BOOL mst set;

    # Initialize key values to infinite and indicate nothing is in MST yet #
    FOR k TO num vertices
    DO
        keys[k] := max int;
        mst set[k] := FALSE
    OD;

    # Include first vertex in MST #
    keys[1] := 1;
    parents[1] := 0; # Root has no parent #

    # The MST will include all vertices #
    FOR k TO num vertices - 1
    DO
        # Pick index of the minimum key value not already in MST #
        INT u := find min key(keys, mst set);

        # Add picked vertex to MST set #
        mst set[u] := TRUE;

        # Update key values and parent indices of picked adjacent #
        # vertices. Only consider vertices not yet in MST #
        FOR v TO num vertices
        DO
            INT graph value := graph[u, v];
            IF NOT mst set[v] AND graph value > 0 AND graph value < keys[v]
            THEN
                parents[v] := u;
                keys[v] := graph value
            FI
        OD
    OD;

    # Construct MST information to return #
    HEAP [num vertices - 1]MST mst;

    # Skip over root and adjust vertex numbers to account for 1-based indexing #
    FOR k FROM 2 TO num vertices
    DO
        mst[k - 1] := MST(parents[k] - 1, k - 1, graph[k, parents[k]])
    OD;

    mst
);

# Find vertex with minimum key values not already in MST #
PROC find min key = (REF []INT keys, REF []BOOL mst set) INT:
(
    INT min value := max int;
    INT min index;
    FOR v TO UPB keys
    DO
        IF keys[v] < min value AND NOT mst set[v]
        THEN
            min value := keys[v];
            min index := v
        FI
    OD;

    min index
);

# Get total MST weight #
PROC get total mst weight = (REF []MST mst) INT:
(
    INT total weight := 0;
    FOR v TO UPB mst
    DO
        total weight +:= weight OF mst[v]
    OD;

    total weight
);

# Parse 1st command-line argument and make sure number of values is a square #
STRING s := argv(4);
PARSEINTLIST_RESULT list result := parse int list(s);
REF []INT values := values OF list result;
INT num values := UPB values;
INT sqrt num values := ENTIER(sqrt(num values) + 0.5);
IF NOT valid OF list result OR num values /= sqrt num values * sqrt num values
THEN
    usage;
    stop
FI;

# Convert values to matrix #
REF [, ]INT graph := convert to matrix(values, sqrt num values, sqrt num values);

# Get MST using Prim's algorithm #
REF []MST mst := prim mst(graph);

# Calculate total weight of MST and display #
INT total weight := get total mst weight(mst);
printf(($gl$, whole(total weight, 0)))

Minimum Spanning Tree in Algol68 was written by:

If you see anything you'd like to change or update, please consider contributing.

How to Implement the Solution

No 'How to Implement the Solution' section available. Please consider contributing.

How to Run the Solution

No 'How to Run the Solution' section available. Please consider contributing.