A Collection of Code Snippets in as Many Programming Languages as Possible
This project is maintained by TheRenegadeCoder
Welcome to the Zeckendorf in Algol68 page! Here, you'll find the source code for this program as well as a description of how the program works.
# Number of Fibonacci numbers before the math overflows #
INT max fibonaccis = 43;
MODE PARSEINT_RESULT = STRUCT(BOOL valid, INT value, STRING leftover);
PROC parse int = (REF STRING s) PARSEINT_RESULT:
(
BOOL valid := FALSE;
REAL r := 0.0;
INT n := 0;
STRING leftover;
# Associate string with a file #
FILE f;
associate(f, s);
# On end of input, exit if valid number not seen. Otherwise ignore it #
on logical file end(f, (REF FILE dummy) BOOL:
(
IF NOT valid THEN done FI;
TRUE
)
);
# Exit if value error #
on value error(f, (REF FILE dummy) BOOL: done);
# Convert string to real number #
get(f, r);
# If real number is in range of an integer, convert to integer. Indicate integer is valid if same as real #
IF ABS r <= max int
THEN
n := ENTIER(r);
valid := (n = r)
FI;
# Get leftover string #
get(f, leftover);
done:
close(f);
PARSEINT_RESULT(valid, n, leftover)
);
PROC usage = VOID: printf(($gl$, "Usage: please input a non-negative integer"));
COMMENT
fib(n) = fib(n - 1) + fib(n - 2)
where:
- fib(0) = 0
- fib(1) = 1
- fib(2) = 1
- fib(3) = 2
COMMENT
MODE FIBSTATE = STRUCT(INT prev, INT result);
PROC init fib = FIBSTATE: FIBSTATE(1, 2);
OP FIB = (FIBSTATE state) FIBSTATE: (result OF state, prev OF state + result OF state);
OP FIBRESULT = (FIBSTATE state) INT: prev OF state;
PROC fibonacci up to = (INT n) REF [] INT:
(
# Temporary array that can handle Fibonacci numbers #
REF [] INT temp results = HEAP [1:max fibonaccis] INT;
# Initialize Fibonacci state #
FIBSTATE state := init fib;
# Collect all Fibonacci numbers up to the specified value #
INT idx := 0;
WHILE FIBRESULT state <= n AND idx < max fibonaccis
DO
idx +:= 1;
temp results[idx] := FIBRESULT state;
state := FIB state
OD;
# Resize results #
REF [] INT results := HEAP [1:idx] INT;
results := temp results[1:idx];
results
);
PROC zeckendorf = (INT n) REF [] INT:
(
# Get Fibonacci numbers up to and including n #
REF [] INT fibs = fibonacci up to(n);
# Allocate temporary space for Zeckendorf values #
INT num fibs := UPB fibs;
REF [] INT temp results := HEAP [1:ENTIER((num fibs + 1) / 2)] INT;
# Going from largest to smallest, repeat until no more Fibonacci numbers #
# left or sum of Fibonacci numbers is equal to n #
INT fib idx := num fibs;
INT zeck idx := 0;
INT remaining := n;
WHILE fib idx > 0 AND remaining > 0
DO
# If this Fibonacci number is less than or equal to n, use it and skip the #
# previous Fibonacci number. Otherwise, go to previous Fibonacci number #
INT fib = fibs[fib idx];
IF fib <= remaining
THEN
zeck idx +:= 1;
temp results [zeck idx] := fib;
fib idx -:= 2;
remaining -:= fib
ELSE
fib idx -:= 1
FI
OD;
# Resize results #
REF [] INT results := HEAP [1:zeck idx] INT;
results := temp results[1:zeck idx];
results
);
PROC show list values = (REF []INT values) VOID:
(
INT n = UPB values;
FOR k TO n
DO
IF k > 1
THEN
print(", ")
FI;
print(whole(values[k], 0))
OD;
IF n > 0
THEN
print(newline)
FI
);
# Parse 1st command-line argument #
STRING s := argv(4);
PARSEINT_RESULT result := parse int(s);
# If invalid or extra characters or negative number, exit #
INT n := value OF result;
IF NOT (valid OF result) OR (leftover OF result) /= "" OR n < 0
THEN
usage;
stop
FI;
REF [] INT results := zeckendorf(n);
show list values(results)
Zeckendorf in Algol68 was written by:
If you see anything you'd like to change or update, please consider contributing.
No 'How to Implement the Solution' section available. Please consider contributing.
No 'How to Run the Solution' section available. Please consider contributing.