A Collection of Code Snippets in as Many Programming Languages as Possible
This project is maintained by TheRenegadeCoder
Welcome to the Longest Common Subsequence in Euphoria page! Here, you'll find the source code for this program as well as a description of how the program works.
include std/io.e
include std/types.e
include std/text.e
include std/get.e as stdget
include std/sequence.e
include std/utils.e
-- Indices for value() return value
enum VALUE_ERROR_CODE, VALUE_VALUE, VALUE_NUM_CHARS_READ
-- Indices for parse_int() return value
enum PARSE_INT_VALID, PARSE_INT_VALUE
function parse_int(sequence s)
-- Trim off whitespace and parse string
s = trim(s)
sequence result = stdget:value(s,, GET_LONG_ANSWER)
-- Error if any errors, value is not an integer, or any leftover characters
boolean valid = (
result[VALUE_ERROR_CODE] = GET_SUCCESS
and integer(result[VALUE_VALUE])
and result[VALUE_NUM_CHARS_READ] = length(s)
)
-- Get value if invalid
integer value = 0
if valid
then
value = result[VALUE_VALUE]
end if
return {valid, value}
end function
-- Indices for parse_int_list() return value
enum PARSE_INT_LIST_VALID, PARSE_INT_LIST_VALUES
function parse_int_list(sequence s)
-- Split string on comma
sequence list = split(s, ",")
-- Parse each item
integer valid = FALSE
sequence values = {}
for n = 1 to length(list)
do
sequence result = parse_int(list[n])
valid = result[PARSE_INT_VALID]
values &= result[PARSE_INT_VALUE]
if not valid
then
exit
end if
end for
return {valid, values}
end function
procedure usage()
puts(STDOUT, "Usage: please provide two lists in the format \"1, 2, 3, 4, 5\"\n")
abort(0)
end procedure
-- Longest Common Sequence
-- Source: https://en.wikipedia.org/wiki/Longest_common_subsequence#Example_in_C#
--
-- However, instead of storing lengths, a subsequence index is stored.
-- Subsequences are stored in a separate array. The indices used for the
-- "c" array in the above source are offset by 1 due to the fact that
-- one-based instead of zero-based indexing must be used
function longest_common_subsequence(sequence list1, sequence list2)
-- Initialize all subsequences to an empty sequence
integer m = length(list1)
integer n = length(list2)
sequence c = repeat(repeat(1, n + 1), m + 1)
sequence subsequences = {{}}
-- Find the longest common subsequence using prior subsequences
integer index1
integer index2
for i = 1 to m
do
for j = 1 to n
do
-- If common element found, create new subsequence based on prior
-- subsequence with the common element appended
if list1[i] = list2[j]
then
subsequences &= {subsequences[c[i][j]] & list1[i]}
c[i + 1][j + 1] = length(subsequences)
-- Else, reuse the longer of the two prior subsequences
else
index1 = c[i + 1][j]
index2 = c[i][j + 1]
c[i + 1][j + 1] = iif(
length(subsequences[index1]) > length(subsequences[index2]),
index1,
index2
)
end if
end for
end for
return subsequences[c[m + 1][n + 1]]
end function
procedure show_list_values(sequence values)
if length(values) > 0
then
sequence format = repeat_pattern("%d, ", length(values))
sequence s = sprintf(format[1..$-2], values)
printf(STDOUT, "%s\n", {s})
end if
end procedure
-- Check command-line arguments
sequence argv = command_line()
if length(argv) < 5 or length(argv[4]) = 0 or length(argv[5]) = 0
then
usage()
end if
-- Parse 1st and 2nd command-line arguments
sequence arg_nums = {4, 5}
sequence lists = {}
for k = 1 to 2
do
sequence list_result = parse_int_list(argv[arg_nums[k]])
lists &= {list_result[PARSE_INT_LIST_VALUES]}
if not list_result[PARSE_INT_LIST_VALID]
then
usage()
end if
end for
-- Get longest common subsequence and display it
sequence result = longest_common_subsequence(lists[1], lists[2])
show_list_values(result)
Longest Common Subsequence in Euphoria was written by:
If you see anything you'd like to change or update, please consider contributing.
No 'How to Implement the Solution' section available. Please consider contributing.
No 'How to Run the Solution' section available. Please consider contributing.