A Collection of Code Snippets in as Many Programming Languages as Possible
This project is maintained by TheRenegadeCoder
Welcome to the Depth First Search in Commodore Basic page! Here, you'll find the source code for this program as well as a description of how the program works.
10 DIM A(99)
15 REM Adjacency matrix
20 DIM AM%(99)
25 REM Vertices
30 DIM VX(9)
35 REM Graph:
36 REM - G%(i, j) contains vertex index for child node j, vertex i or
37 REM negative to indicate no more child nodes
40 DIM G%(9, 10)
45 REM Visited nodes: 1 if visited, 0 otherwise
50 DIM VS%(9)
55 REM Stack - 2 elements for vertex
60 DIM SK%(19)
65 REM Get adjacency matrix
70 GOSUB 2000
80 IF V = 0 OR C <> -1 THEN GOTO 400: REM invalid or end of input/value
90 NM = NA
100 FOR I = 0 TO NA - 1
110 AM%(I) = 0
120 IF A(I) <> 0 THEN AM%(I) = 1
130 NEXT I
135 REM Get vertices
140 GOSUB 2000
150 IF V = 0 OR C <> -1 THEN GOTO 400: REM invalid or end of input/value
160 NV = NA
170 FOR I = 0 TO NA - 1
180 VX(I) = A(I)
190 NEXT I
195 REM Get target value
200 GOSUB 1000
210 IF V = 0 OR C >= 0 THEN GOTO 400: REM invalid or not end of input/value
220 T = NR
225 REM Form graph
230 GOSUB 2500
235 REM Perform depth search and show result
240 SP = -1: REM Reset stack pointer
250 GOSUB 3000
260 R$ = "false"
270 IF VI >= 0 THEN R$ = "true"
280 PRINT R$
290 END
400 Q$ = CHR$(34): REM quote
410 PRINT "Usage: please provide a tree in an adjacency matrix form ";
420 PRINT "("; Q$; "0, 1, 1, 0, 0, 1, 0, 0, 0, 0, ";
430 PRINT "1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0"; Q$; ") ";
440 PRINT "together with a list of vertex values ";
450 PRINT "("; Q$; "1, 3, 5, 2, 4"; Q$; ") and the integer to find ";
460 PRINT "("; Q$; "4"; Q$; ")"
470 END
1000 REM Read input value one character at a time since Commodore BASIC
1001 REM has trouble reading line from stdin properly
1002 REM NR = number
1003 REM V = 1 if valid number, 0 otherwise
1004 REM C = -2 if end of input, -1 if end of value,
1005 REM 32 if whitespace, ASCII code of last character otherwise
1006 REM Initialize
1010 NR = 0
1020 V = 0
1030 S = 1
1035 REM Loop while leading spaces
1040 GOSUB 1500
1050 IF C = 43 OR C = 45 THEN GOTO 1100: REM + or -
1060 IF C >= 48 AND C <= 57 THEN GOTO 1150: REM 0 to 9
1070 IF C = 32 THEN GOTO 1040: REM whitespace
1080 RETURN: REM other character
1085 REM Loop while sign
1090 GOSUB 1500
1100 IF C = 43 THEN GOTO 1090: REM +
1110 IF C >= 48 AND C <= 57 THEN GOTO 1150: REM 0 to 9
1120 IF C <> 45 THEN RETURN: REM not -
1130 S = -S
1140 GOTO 1090
1145 REM Set valid flag
1150 V = 1
1155 REM Loop while digits
1160 NR = (ABS(NR) * 10 + C - 48) * S
1170 GOSUB 1500
1180 IF C >= 48 AND C <= 57 THEN GOTO 1160: REM 0 to 9
1185 REM Loop while trailing spaces
1190 IF C < 0 OR C <> 32 THEN RETURN: REM end character or not whitespace
1200 GOSUB 1500
1210 GOTO 1180
1500 REM Get input character
1501 REM A$ = input character
1502 REM C = One of the following:
1502 REM - -1 if end of value
1503 REM - -2 if end of input
1504 REM - 32 if whitespace
1505 REM - ASCII code otherwise
1510 GET A$
1520 C = ASC(A$)
1530 IF C = 13 THEN C = -1
1540 IF C = 255 THEN C = -2
1550 IF C = 9 OR C = 10 THEN C = 32
1560 RETURN
2000 REM Read array value
2001 REM A contains array value
2002 REM NA contains length of array
2003 REM V = 1 if valid number, 0 otherwise
2004 REM C = -2 if end of input, -1 if end of value,
2005 REM 32 if whitespace, ASCII code of last character otherwise
2006 REM Initialize
2010 NA = 0
2020 GOSUB 1000: REM Read input value
2030 IF V = 0 THEN RETURN: REM invalid
2040 A(NA) = NR
2050 NA = NA + 1
2060 IF C < 0 THEN RETURN: REM end of input or value
2070 IF C = 44 THEN GOTO 2020: REM comma, get next value
2080 V = 0
2090 RETURN
2500 REM Form graph
2501 REM Inputs:
2502 REM - AM% contains adjacency matrix
2503 REM - NM contains number of items in adjacency matrix
2504 REM - NV contains number of vertices
2505 REM Output: G% contains graph
2510 K = -1
2520 FOR I = 0 TO NV - 1
2530 N = -1
2540 FOR J = 0 TO NV - 1
2550 K = K + 1
2560 IF K >= NM THEN GOTO 2600
2570 IF AM%(K) = 0 THEN GOTO 2600
2580 N = N + 1
2590 G%(I, N) = J
2600 NEXT J
2610 G%(I, N + 1) = -1: REM End of child nodes
2620 NEXT I
2630 RETURN
3000 REM Perform depth first search
3001 REM Commodore Basic does not really support recursion because everything
3002 REM is a global variable. However, recursion can be simulated with
3003 REM a "stack". This "stack" is just an array, SK, and a stack index, SP.
3004 REM Inputs:
3005 REM - VX contains vertices
3006 REM - NV contains number of vertices
3007 REM - T contains value to find
3008 REM - G% contains graph
3009 REM Output: VI contains index of vertex found, -1 if not found
3010 REM Initialize visited nodes
3020 FOR I = 0 TO NV - 1
3030 VS%(I) = 0
3040 NEXT I
3050 REM Start at root node
3060 NI = 0
3070 VI = -1
3100 REM Recursive portion of algorithm
3101 REM Inputs:
3102 REM - NI contains node index
3103 REM - VX contains vertices
3104 REM - NV contains number of vertices
3105 REM - T contains value to find
3106 REM - G% contains graph
3107 REM - VS% contains visited nodes
3108 REM Output: VI contains index of vertex found, -1 if not found
3110 IF VX(NI) = T THEN VI = NI: GOTO 3250: REM Found
3120 VS%(NI) = 1: REM Indicate node visited
3130 J = -1
3140 J = J + 1
3150 CI = G%(NI, J): REM Get child node
3160 IF CI < 0 THEN GOTO 3250: REM No more child nodes
3170 IF VS%(CI) <> 0 THEN GOTO 3140: REM Skip visited node
3180 SP = SP + 1: SK%(SP) = J: REM Push child node index
3190 SP = SP + 1: SK%(SP) = NI: REM Push node index
3200 NI = CI: REM Go to child node
3210 GOSUB 3100: REM Perform depth first search on child node
3220 NI = SK%(SP): SP = SP - 1: REM Pop node index
3230 J = SK%(SP): SP = SP - 1: REM Pop child node index
3240 IF VI < 0 THEN GOTO 3140: REM If not found, go to next child node
3250 RETURN
Depth First Search in Commodore Basic was written by:
If you see anything you'd like to change or update, please consider contributing.
No 'How to Implement the Solution' section available. Please consider contributing.
No 'How to Run the Solution' section available. Please consider contributing.