Depth First Search in Algol68

Published on 29 January 2023 (Updated: 24 March 2023)

Welcome to the Depth First Search in Algol68 page! Here, you'll find the source code for this program as well as a description of how the program works.

Current Solution

MODE PARSEINT_RESULT = STRUCT(BOOL valid, INT value, STRING leftover);
MODE PARSEINTLIST_RESULT = STRUCT(BOOL valid, REF []INT values);

PROC parse int = (REF STRING s) PARSEINT_RESULT:
(
    BOOL valid := FALSE;
    REAL r := 0.0;
    INT n := 0;
    STRING leftover;

    # Associate string with a file #
    FILE f;
    associate(f, s);

    # On end of input, exit if valid number not seen. Otherwise ignore it #
    on logical file end(f, (REF FILE dummy) BOOL:
        (
            IF NOT valid THEN done FI;
            TRUE
        )
    );

    # Exit if value error #
    on value error(f, (REF FILE dummy) BOOL: done);

    # Convert string to real number #
    get(f, r);

    # If real number is in range of an integer, convert to integer. Indicate integer is valid if same as real #
    IF ABS r <= max int
    THEN
        n := ENTIER(r);
        valid := (n = r)
    FI;

    # Get leftover string #
    get(f, leftover);

done:
    close(f);
    PARSEINT_RESULT(valid, n, leftover)
);

PROC count list items = (STRING s) INT:
(
    INT count := 1;
    FOR k TO UPB s
    DO
        IF s[k] = ","
        THEN
            count +:= 1
        FI
    OD;

    count
);

PROC parse int list = (REF STRING s) PARSEINTLIST_RESULT:
(
    BOOL valid := FALSE;
    STRING leftover := s;
    INT num list items = count list items(s);
    HEAP [num list items]INT values;

    # Repeat while valid value #
    FOR k TO num list items
    DO
        # Get next integer value and update leftover string #
        PARSEINT_RESULT result = parse int(leftover);
        valid := valid OF result;
        leftover := leftover OF result;

        # Append the integer value to list #
        values[k] := value OF result;

        # Do nothing if end of string #
        IF leftover = ""
        THEN
            SKIP
        # Skip comma if leftover string starts with comma #
        ELIF leftover[1] = ","
        THEN
            leftover := leftover[2:]
        # Otherwise indicate invalid #
        ELSE
            valid := FALSE
        FI
    UNTIL NOT valid
    OD;

    PARSEINTLIST_RESULT(valid, values)
);

PROC usage = VOID: (
    printf((
        $gl$,
        (
            "Usage: please provide a tree in an adjacency matrix form "
            + "(""0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0"") "
            + "together with a list of vertex values (""1, 3, 5, 2, 4"") "
            + "and the integer to find (""4"")"
        )
    ))
);

COMMENT
Create tree from adjacency matrix and vertex values.
The tree consists of a sequence of nodes.
Each node consists of a vertex value and sequence of child indices
COMMENT
MODE NODE = STRUCT(INT value, REF []INT children);

PROC create tree = (REF []INT adjacency matrix, REF []INT vertex values) REF []NODE:
(
    # Initialize nodes #
    INT num vertices := UPB vertex values;
    HEAP [num vertices]NODE nodes;
    INT num adjacencies := UPB adjacency matrix;

    # Get children for this vertex value based on non-zero values of adjacency matrix #
    INT index := 0;
    FOR row TO num vertices
    DO
        # Count number of children #
        INT num children := 0;
        FOR col TO num vertices
        WHILE (index + col) < num adjacencies
        DO
            IF adjacency matrix[index + col] > 0
            THEN
                num children +:= 1
            FI
        OD;

        # Add child node indices to this node #
        HEAP [num children]INT children;
        num children := 0;
        FOR col TO num vertices
        WHILE index < num adjacencies
        DO
            index +:= 1;
            IF adjacency matrix[index] > 0
            THEN
                num children +:= 1;
                children[num children] := col
            FI
        OD;

        nodes[row] := NODE(vertex values[row], children)
    OD;

    nodes
);

PROC depth first search = (REF []NODE tree, INT target) REF NODE:
(
    # Initialize visit nodes #
    INT num vertices = UPB tree;
    HEAP [num vertices]BOOL visited;
    FOR k TO num vertices
    DO
        visited[k] := FALSE
    OD;

    # Perform depth first recursively starting at root of tree #
    INT found index := depth first search rec(tree, target, 1, visited);
    (found index > 0 | tree[found index] | NIL)
);

PROC depth first search rec = (
    REF []NODE tree, INT target, INT node index, REF []BOOL visited
) INT:
(
    INT found index := 0;

    # If node is invalid or value of this node matches target, return this node index #
    IF node index = 0 OREL value OF tree[node index] = target
    THEN
        found index := node index
    ELSE
        # Indicate this node is visited #
        visited[node index] := TRUE;

        # Perform depth first search on each unvisited child of this node (if any). #
        # Stop when match found #
        INT child index;
        REF []INT children := children OF tree[node index];
        FOR k TO UPB children
        WHILE found index = 0
        DO
            child index := children[k];
            IF NOT visited[child index]
            THEN
                found index := depth first search rec(tree, target, child index, visited);
                visited[child index] := TRUE
            FI
        OD
    FI;

    found index
);

# Parse 1st command-line argument #
STRING s := argv(4);
PARSEINTLIST_RESULT list result := parse int list(s);
REF []INT adjacency matrix := values OF list result;
IF NOT valid OF list result
THEN
    usage;
    stop
FI;

# Parse 2nd command-line argument #
s := argv(5);
list result := parse int list(s);
REF []INT vertex values = values OF list result;
IF NOT valid OF list result
THEN
    usage;
    stop
FI;

# Parse 3rd command-line argument #
s := argv(6);
PARSEINT_RESULT result := parse int(s);
INT value := value OF result;
IF NOT valid OF result
THEN
    usage;
    stop
FI;

# Create tree from adjacency matrix and vertex values #
REF []NODE tree := create tree(adjacency matrix, vertex values);

# Run depth first search and indicate if value is found #
REF NODE node := depth first search(tree, value);
printf(($gl$, (node ISNT REF NODE(NIL) | "true" | "false")))

Depth First Search in Algol68 was written by:

If you see anything you'd like to change or update, please consider contributing.

How to Implement the Solution

No 'How to Implement the Solution' section available. Please consider contributing.

How to Run the Solution

No 'How to Run the Solution' section available. Please consider contributing.